Credit Shocks and Financial Literacy Accumulation (Job Market Paper)

Daniel Jacobs ${ }^{1}$

December 2019

[^0]
Abstract

Do adverse borrowing conditions induce financial literacy accumulation? I develop a life cycle model with financial literacy investment and borrowing rate uncertainty and calibrate it to the American Life Panel. When households expect borrowing rates to vary often, they invest in financial literacy to insure against borrowing rate variation. I evaluate the effect of two popular policies developed to ameliorate the effects of low financial literacy-an interest rate cap and a financial literacy subsidy. I find that an interest rate cap discourages financial literacy accumulation, while a subsidy of leads households to obtain a higher return by three basis points. In particular, the subsidy improves the welfare the most for low-income, highly leveraged households.

1. Introduction

Policymakers have promoted financial literacy as a means to improve financial outcomes, but financial knowledge remains low worldwide. The 2014 S\&P Global FinLit Survey found that only a third of adults could correctly answer 75% of the questions on a simple financial literacy test. ${ }^{1}$ If those adults who scored low were to improve their financial literacy, they might see an increase in their net worth by as much as $€ 80,000$ (Alessie, Lusardi, and Van Rooij 2011). If financial literacy is valuable, what accounts for its low level?

A clue to understanding this low level is that financial literacy is partly a choice. If the cost of acquiring financial literacy is too high, an individual may choose not to acquire it. However, a change in circumstances may alter their appraisal. In particular, people who have experienced economic distress often find the benefits of financial literacy outweigh the costs: households in countries that have experienced hyperinflation, score better on inflation-related literacy questions than the world average (Klapper, Lusardi and Panos 2015). Furthermore, households are more likely to retain financial education when they are bankrupt (Wiener et al. 2005).

I develop and calibrate a life cycle model with financial literacy investment and uncertainty about the rate of borrowing. Individuals do not know the interest rate that they will have to pay when their loan matures and this uncertainty induces people to invest in financial literacy in order to better deal with future borrowing costs. Young individuals are most affected by uncertainty because they have the greatest demand for credit and therefore, benefit the most from financial literacy accumulation. I show that policies that make borrowing cheaper, such as an interest rate cap, discourage financial literacy accumulation and may have unintended consequences.

[^1]I motivate my model by documenting several facts using the American Life Panel (ALP). The ALP is a probability-based panel with over 500 surveys in the archive. The panel allows researchers to identify individuals across surveys and I use this feature to construct a novel dataset. I identify individuals by Metropolitan Statistical Area (MSA) and merge the dataset with bank branch-level data using the Federal Deposit Insurance Corporation (FDIC).

I exploit the panel feature of the ALP to construct a time-varying measure of financial literacy, measured as the number of financial knowledge questions answered correctly by an individual in that year. This measure is constructed by combining surveys in the ALP that ask financial literacy questions in that year. As an exogenous measure of credit supply, I use the average loan-loss ratio for multi-state banks located in an individual's MSA. The loan-loss ratio is the ratio of loan-reserves-to-total-assets held in expectation of borrowers defaulting. When this ratio increases, banks decrease their supply of loanable funds and increase the borrowing interest rate in that region.

I find that a percentage point increase in the loan-loss ratio is associated with a sixpercent increase in financial literacy. I explore the heterogeneity of this financial literacy accumulation and find evidence that it is diminishing with age. This is consistent with a standard life cycle model's prediction that older individuals have accumulated savings to buffer against shocks and have a shorter-horizon over which to benefit from financial literacy.

Applying the results of the regression analysis, I develop a life cycle model with financial literacy investment and borrowing rate shocks. In my model, financial literacy is a stock that households can accumulate to raise their savings return. Households with low financial literacy save less and borrow more because their savings return is low, but when the cost of borrowing increases, they save more and invest in financial literacy. I calibrate the model to the ALP and show that it is able to replicate the life cycle profile
of financial literacy. The model can also match age-cohort borrowing percentages in the Survey of Consumer Finance 2010.

In order to analyze the novel features of my model, I compare my baseline model to a series of counterfactual models lacking a targeted model feature. In the first counterfactual, individuals cannot borrow but they can invest in financial literacy. In this case, they save more and invest more in financial literacy as an alternative consumption smoothing tool. Individuals with low savings and/or financial literacy suffer the greatest welfare loss because they lose their preferred means of consumption smoothing.

In the second counterfactual, individuals can borrow but cannot invest in financial literacy. Compared to the baseline, individuals borrow more but arrive at retirement age with lower wealth. In this scenario, individuals with high savings suffer the greatest welfare loss because they lose the greatest return on their savings. The experiment demonstrates the changing relationship of borrowing and financial literacy investment over the life cycle. Borrowing lets individuals consume more when they have low wealth whereas financial literacy raises their return on savings; but both can serve as tools for consumption smoothing. Individuals can borrow to invest in financial literacy but in doing so, they lower their willingness to borrow because they raise their return on savings and increase the opportunity cost of borrowing.

I perform a sensitivity analysis to examine the effect of borrowing rate uncertainty on financial literacy accumulation. When borrowing rates are persistent, borrowers stratify into two groups: those who expect low borrowing rates and are discouraged from acquiring financial literacy and those who acquire financial literacy because borrowing is costly. However, when borrowing rates are not persistent, households expect borrowing to be costlier (cheaper) next period if it is cheap (costlier) today. On average, financial literacy is greater than the persistent case because households acquire financial literacy to insure against borrowing rate variation. This exercise suggests that public policies may have
additional effects on financial literacy acquisition by changing expectations about future borrowing conditions.

Finally, I perform a series of policy experiments. Financial literacy has been of recent concern for policy makers (Bernanke 2006) and several proposals have been made to ameliorate the effects of low financial literacy. I simulate two of these policies-a borrowing interest rate cap and a financial literacy subsidy-to test the effectiveness of each for improving household welfare.

I find that the interest rate cap does little to encourage financial literacy investment. Households borrow more when they are young but the gain from the lower borrowing rates is not funneled into greater savings or financial literacy investment. I augment the experiment by simulating a 10% rationing of credit supply and find that the welfare gain from the interest rate cap is wiped out. Notably, households with low financial literacy suffer the most from the credit rationing because they lack a significant alternative means of consumption smoothing.

I find that a financial literacy subsidy is a better option. For a subsidy which covers 10% of the cost of a financial literacy investment, the average return on savings increases by 3 basis percentage points at retirement from the baseline case. On average, young individuals see a welfare gain of 0.03% but there is significant heterogeneity in welfare gains. Low-income and highly-leveraged individuals benefit the most from the subsidy. They increase their financial literacy by 1% and this leads to an increase in Compensating Equivalent Variation (CEV) by $0.2-0.25 \%$.

The rest of the paper is organized as follows. Following the literature review, I document some motivating facts from the American Life Panel. Next, I will construct a life cycle model with endogenous financial literacy accumulation and shocks to the borrowing interest rate. Finally, I calibrate the model and run a series of policy experiments exploring the implications of the model.

2. Related Literature

My work builds most immediately on that of Lusardi, Michaud and Mitchell (2017) and Jappelli and Padula (2013). These papers treat financial literacy accumulation as an investment that determines an individual's savings return. The main focus is on the relationship between wealth and financial literacy, a correlation commonly observed in empirical work (e.g. Bernheim, Douglas and Garrett 2003). Wealthier individuals acquire financial literacy not just because they have more resources to invest, but also because they face a greater interest forgone for not acquiring in financial literacy.

Jappelli and Padula (2013) build an intertemporal consumption model with financial literacy investment. In their model, financial literacy is paid for with resources and this implies that agents will not acquire financial literacy if the return is too small. The authors test this hypothesis and find that countries with more generous social welfare programs have lower average financial literacy. This suggests that policies that reduce uncertainty about consumption may also reduce the incentive to invest in financial literacy. However, their model is limited in two important ways. First, agents do not have the possibility of borrowing in their model. Borrowing could encourage financial literacy investment by raising the resources that could be invested, but it also may discourage financial literacy investment because borrowing is an alternative form of insurance against negative income shocks. Second, this model is limited in explaining heterogeneity in household response because it is constructed as a deterministic, representative-agent model. However, the effect of more generous welfare programs may vary enormously depending on an individual's state. For example, wealthier individuals may be relatively indifferent to a consumption floor provided by a generous social welfare program.

The effect of heterogeneity is explored more by Lusardi, Michaud and Mitchell (2017). They construct a life cycle model of financial literacy investment with out-of-pocket costs,
income shocks and mortality risk. ${ }^{2}$ In particular, they find that $30-40 \%$ of retirement wealth variation is explained by endogenous financial literacy accumulation in their model. This suggests the significance of life experience in (dis)encouraging financial literacy accumulation and its related outcomes.

However, this model is still limited to explaining variation in financial literacy between individuals with high and low wealth; it cannot account for when individuals are net borrowers, which is common early in one's life. In order to help explain the observed differences in financial literacy for individuals with low savings, the model should be augmented with shocks that are significant for young cohorts, such as borrowing interest rate shocks. This is consistent with several meta-analyses of financial literacy that have found financial education to be most effective when offered at a "teachable moment" (Kaiser and Menkhoff 2017) or "just-in-time" (Fernandes, Lynch and Netemeyer 2014). Financially literate households do not necessarily borrow less but rather tend to be more prepared for credit problems. Gorbachev and Luengo-Prado (2019) find that financially literate individuals are more likely to hold significant levels of liquid savings, consistent with the view that they are holding savings for precautionary purposes. This is further supported by Lusardi and Tufano (2015), who find that individuals with high financial literacy report less difficulty handling their debt load.

My main contribution is to extend the financial literacy life cycle model to allow agents to borrow at rate that varies in a stochastic manner. Borrowing experiences early in life have a strong influence on financial literacy accumulation (Brown et al. 2019) and my model is able to capture the effect of early-life borrowing rate shocks. The effect of even small changes should not be understated. Financial literacy accumulation decisions early in life can have large lifetime effects as they compound over the life cycle.

[^2]
3. Credit Tightness and Financial Literacy Investment

I begin by documenting patterns of financial literacy change using the ALP. My interest is in testing how a change in the cost of credit may influence the change in financial literacy. I exploit two aspects of the ALP in order to control for many unobserved factors that may influence financial literacy accumulation. First, I utilize the panel structure so that I can measure financial literacy changes during the sample-period and account for invariant unobserved factors by estimating a fixed-effects regression model.

Second, I am able to identify individuals by MSA in the ALP and use this to exploit regional variation in credit tightness. Financial literacy may be correlated with the borrowing rate at which an individuals draw a loan, so I construct a plausibly exogenous measure of credit availability to account for this. My measure of credit tightness for an MSA will be the average loan-loss reserve ratio for banks with a branch in that region. The loan-loss reserve ratio is the amount of reserves set aside in expectation of defaulting loans, to the total amount of bank assets. A larger ratio indicates that a bank is limiting its supply of loanable funds.

3.1 Financial Literacy Measure

I construct an index of financial literacy using 12 questions divided into four categories: basic knowledge (1), sophisticated economic concepts (2), financial knowledge (3) and retirement/tax knowledge (4). Twelve questions is considered sufficient to be a meaningful measure of a person's financial literacy. ${ }^{3}$ Each question is weighted equally.

The first three questions fall into the "basic" category. The first question tests individuals about their knowledge of compound interest rates. The second question tests an individual's ability to calculate the real interest rate given a rate of inflation and nominal

[^3]interest rate. The third question tests a respondent's knowledge of risk diversification. These three questions are regularly adopted in financial literacy research and are commonly referred to as the "Big Three" (Hastings, Madrian and Skimmyhorn 2013).

The next two questions fall into what may be called economic concepts, because they are not reducible to numerical calculation but require knowledge of specific economic concepts. These include a question testing the "money illusion" and a question on the time value of money. Both of these questions were included in Lusardi and Mitchell (2009).

The next three questions are about stock market related knowledge. Several of these questions - such as those dealing with risk diversification and bond prices - are sometimes referred to as "sophisticated" financial literacy questions (Alessie, Lusardi and Van Rooij 2012). Researchers have been interested in what extent a lack of financial literacy might be a barrier to participation in the stock market, so these questions are included in the measure to capture this particular sphere of financial literacy.

Finally, three questions test a respondent's knowledge of retirement planning and taxation. These questions were included as part of the "Five Steps" financial education program (Heinberg et al. 2014). They cover topics such as knowledge of when IRA distributions are taxed (traditional versus Roth IRA) and when a household must make a minimum withdrawal (every year starting the year one turns 70.5). Retirement planning has seen many innovations in the past few decades but retirement financial literacy remains low (Lusardi and Mitchell 2007; Fisch, Hasler and Lusardi (2019)).

I perform a simple principal components analysis with the 12 questions and report the "Uniqueness" or 1-Communality of each question in table 1. Communality is the proportion of variance for each question that can be explained by the latent factor. No question has more than 30% of its variance explained by the predicted factor. Therefore, I do not reduce the questions down to a set of more basic factors.

To my knowledge, this is the first time a panel data set has been constructed with timevarying financial literacy index. This allows me to measure changes in financial literacy for an individual over time, as well as compare differences in financial literacy changes across age-cohorts.

3.2 Measure of Credit Tightness

In order to proxy for local credit tightness, I use the average annual loan loss reserve ratio for an MSA in year t. Loan loss reserves serve to smooth income for banks that may be negatively impacted by portfolio depreciation during economic downturns (Greenawalt and Sinkey 1988; Balla, Rose and Romero 2012). The loss provisioning directly affects the credit supply, because these assets are put into reserve instead of being lent out. Furthermore, loan loss provisioning has been found to be positively associated with tighter lending standards (Balasubramanyan, Zaman and Thomson 2017). As a robustness check, I report a regression of state mortgages rates on state averaged loan-loss ratios in Table 2 and find that a one-percentage point increase in the loan-loss ratio is positively associated with a $0.07-0.09$ percentage point increase in mortgage rates.

3.3 Relationship between Credit Shocks and Financial Literacy

In this section, I will detail the regression estimation method. The baseline regression model is:

$$
\begin{equation*}
\Delta \text { FinancialLiteracy }_{i j t}=\alpha_{i}+\beta_{1} \Delta \text { LoanReserve }_{j t}+\gamma \Delta X_{i j t}+\delta_{t}+\Delta \varepsilon_{i j t} \tag{1}
\end{equation*}
$$

where the dependent variable is the change in financial literacy for individual i in MSA j from year $\mathrm{t}-1$ to t. The main effect, LoanReserve ${ }_{i j t}$, captures the influence of regional variation in credit tightness on the change in financial literacy. The first-differences regression model controls for the level of financial literacy in the initial year (2009) as well as invariant unobservable characteristics about individuals. In addition to this, the fixed
effect α_{i}, controls for individual-differences in the slope of financial literacy change e.g. individuals may learn at increasing or decreasing rates. Year dummies $\left(\delta_{t}\right)$ are included to account for changes in conditions that affect all individuals. This includes not just aggregate economic conditions (such as the US inflation rate) but also practice effects or the potential gain from seeing the test questions again (Hausknecht et al. 2007). All learning requires some degree of memorization but if the change in financial literacy is only the result of retesting, then the inclusion of year dummies should render the main effect's coefficient statistically insignificant.

It is possible that there are unobservables that simultaneously affect both banking conditions and financial literacy accumulation in a given MSA. For example, there may be a state policy that encourages a joint financial education initiative between local banks and schools. In order to account for this potential endogeneity regarding the decisions of banks and the local population, I use only multi-state banks for constructing the measure of local credit tightness. Angbazo (1997) finds that super-regional banks (large banks operating in more than one state) are much less sensitive to default risk than local banks. ${ }^{4}$ Hence, a multi-state bank should make decisions that are plausibly exogenous to any specific local borrowing market's history and level of financial literacy. Similar to Cooper, Luengo-Prado and Olivei (2016), I weight the contribution of each bank in MSA-level measure by their deposit-share in that market.

Table 3 reports the summary statistics for the variables of interest. Financial literacy is increasing on average during this period but the median change is zero. This suggests that only a portion of the general population was acquiring financial literacy and that there may be variation that explains this selective acquisition. Loan-loss reserve ratio is

[^4]increasing because banks were provisioning reserves during this period of high borrowing risk.

Table 4 lists the correlation matrix for an extended set of variables. The loan-loss reserve ratio (LRR) is positively correlated with financial literacy and income; the ratio is negatively associated with home ownership. This is consistent with the view that reserves are being provisioned by banks in response to either an increase in mortgage defaults or the expectation of future mortgage defaults. I find that financial literacy is strongly correlated with income and age, two common determinants of financial literacy.

Column 1 in table 5 reports the result from the basic regression. A percentage point change in Δ LoanReserve $_{j t}$ is associated with a six-percent change in financial literacy change. This translates to about 0.3 of a standard deviation of financial literacy change. The result is statistically significant at the 5% significance level and suggests that credit tightening has an influence on financial literacy change.

Life Cycle Profile Figure 1 plots out the life cycle profile for the percentage of questions answered correctly by 5-year age-band. ${ }^{5}$ Individuals accumulate financial literacy over their lifetime but the rate of accumulation decreases after age $50 .{ }^{6}$

If financial literacy is an investment, then the age at which it is acquired should affect the rate of accumulation: younger households have a longer period to benefit from the financial literacy. Furthermore, households may be affected by credit shocks differently over their life cycle. Older individuals have had time to accumulate savings and may able to smooth consumption by drawing on savings rather than borrow. This could also influence the decision to acquire financial literacy.

To estimate the life cycle effect, I augment regression equation 1 with a quadratic age

[^5]term and several interactions. ${ }^{7}$ The augmented regression becomes:
\[

$$
\begin{equation*}
\Delta \text { FinancialLiteracy }_{i j t}=\alpha_{i}+\beta_{1} \Delta \text { LoanReserve }_{j t}+\beta_{2}{\overline{\text { Age }^{2}}}_{i j t}+\gamma \Delta X_{i j t}+\delta_{t}+\Delta \varepsilon_{i j t} \tag{2}
\end{equation*}
$$

\]

Column 2 in table 5 reports the result of the regression with the addition of a quadratic age term..8 I find that the quadratic term, β_{2}, is negative and statistically significant. This suggests that individuals are decreasing their rate of financial literacy accumulation as they grow older. This result is consistent with a standard life cycle model, where older individuals face a shorter time-horizon to benefit from an investment. In columns 3 and 4 , I interact Δ LoanReserve $_{j t}$ with a linear and quadratic age-term. The coefficients on both terms are negative but statistically insignificant.

Financial Literacy and Assets In the preceding regression analysis, I found that changes in financial literacy are positively correlated with changes in loan-loss ratio. I interpret this as evidence of individuals acquiring financial literacy to better manage their resources when borrowing becomes more expensive. However, I do not observe the returns on savings. My strategy to identify the relationship between financial literacy and liquid wealth, is to partial out the effects of other determinants of liquid wealth and regress the residual on financial literacy. The variation of the residual that is explained by financial literacy should shed light on the relationship of financial literacy and liquid wealth. I first estimate the following regression:

$$
\begin{equation*}
\log \left(\text { Liquid_Wealth }_{i j t}\right)=\alpha_{i}+X_{i j t} \gamma^{\prime}+\delta_{t}+\varepsilon_{i j t} \tag{3}
\end{equation*}
$$

where Liquid_Wealth ${ }_{i j t}$ is the sum of an individual's liquid wealth in MSA j in year t. I include individual fixed effects $\left(\alpha_{i}\right)$, year-fixed effects $\left(\delta_{t}\right)$ and a vector of controls, $X_{i j t}$. The vector of controls contains all of the control variables from the preceding regression plus a quadratic age term and the loan-loss reserve ratio in MSA j in year t.

[^6]I then regress the residuals from equation 3 on financial literacy. Table 6 reports the results of the regression. I find that Financial Literacy (FinLit $_{i j t}$) is positively associated with the residual from the regression in equation 3 at the 5% level of significance. The R^{2} is 0.0502 in the baseline regression, suggesting that about 5% of the residual variation can be explained by financial literacy. In the next two columns, I break down the regression into two subsamples (old and young) and find a similar estimate.

To summarize, I first found that financial literacy change is associated with a plausibly exogenous measure of change in credit tightness. Therefore, my model of financial literacy investment will have an exogenous shock to the borrowing interest rate in order to capture this relationship. Second, I found evidence that individuals acquire financial literacy at a diminishing rate over their lifetimes. My model will be a life cycle model to capture the effect of a diminishing time horizon on financial literacy investment. Last, I found that liquid wealth and financial literacy were correlated, after controlling for other determinants of liquid wealth. This suggests that financial literacy has an effect on the accumulation of liquid wealth and I will model this by letting the financial literacy investment determine the return on savings. The value of having these features in a calibrated model is that it will allow me to give a quantitative assessment of the welfare effects of different scenarios of borrowing and borrowing-related policies.

In the next section, I will develop a model of financial literacy investment under borrowing rate uncertainty. My model draws from Jappelli and Padula (2013) and Lusardi, Michaud and Mitchell (2017). The stochastic borrowing interest rate is most closely related to Ludvigson (1998) and Fulford (2011). Their models have a stochastic credit constraint, but I model a stochastic borrowing rate in my context in order to better link the model to the motivating regression.

4. A Model of Financial Literacy Accumulation and Credit Shocks

4.1 Household

The economy is populated by a large number of households who live for J years. They have identical preferences that can be represented as a time-separable discounted utility function:

$$
\begin{equation*}
\max _{\left\{c_{t}\right\}_{t=1}^{J}} E_{0}\left[\sum_{t=0}^{J} \beta^{t-1} \frac{c_{t}^{1-\gamma}}{1-\gamma}\right] . \tag{4}
\end{equation*}
$$

In every period t, individuals receive income y. This is made up of three parts. First, individuals inelastically supply one unit of labor each period and earn a wage w, which is normalized to 1 . Second, individuals face a log-normal income shock denoted by η_{t}. Third, income follows an age-earnings profile e_{t} that is normalized to 1 in the initial period. Altogether, the per-period income is as follows:

$$
\begin{equation*}
y_{t}=w \cdot e_{t} \cdot \exp \left(\eta_{t}\right) \tag{5}
\end{equation*}
$$

where $\eta_{t+1}=\rho_{\eta} \eta_{t}+\varepsilon_{t+1}$ and $\varepsilon_{t+1} \sim N\left(0, \sigma_{\varepsilon}^{2}\right)$.

4.2 Asset and Financial Literacy choice

Each period, an individual has an opportunity to make two asset choices: a savings choice and a financial literacy investment. In my model, the return on savings will be determined endogenously. Following Jappelli and Padula (2013), an individual's interest rate is a function of their financial literacy stock:

$$
\begin{equation*}
r\left(\Phi_{t}\right)=A \Phi_{t}^{\alpha}+r_{\text {base }}^{s} \tag{6}
\end{equation*}
$$

This return is paid at the beginning of period t for the stock of financial literacy accumulated up to that period, Φ_{t}. The intuition for treating the stock of financial literacy as the
determinant of the interest rate follows from the observed relationship between financial literacy and savings assets. ${ }^{9}$ Explanations for the relationship include making less fiduciary mistakes (Lusardi and Tufano 2009); knowledge of savings instruments' returns (Deuflhard, Georgarakos and Inderst 2015); and better retirement planning (Lusardi and Mitchell 2007).

The α parameter is the elasticity of financial literacy investment. I assume $\alpha \in(0,1)$ so that agents face diminishing returns to financial literacy investment, consistent with the empirical findings in section 3.3. The parameter A is the productivity of the financial literacy investment. Finally, $r_{\text {base }}^{s}$ is a base interest rate so that individuals with zero financial literacy still receive a positive return to saving.

The structure of the production function follows from previous empirical work that has found diminishing returns to financial literacy education. Both Cole el al. (2011) and Fort et al. (2016) find that financial literacy interventions are less effective for higher educated individuals. This is likely because higher-educated individuals tend to already have high financial literacy (Lusardi et al. 2010), so that the benefit to additional financial literacy investment is lower than it is for less educated individuals. A life cycle profile has also been observed in terms of financial literacy accumulation and depreciation. Older individuals tend to have at least accumulated some financial literacy from experience (Eberhardt et al. 2019), so they likely face a diminishing marginal benefit to an additional unit of financial literacy. ${ }^{10}$

Following Jappelli and Padula (2013), I allow individuals to accumulate and de-accumulate financial literacy. ${ }^{11}$ In every period t, an individual can invest ℓ_{t+1} in their financial

[^7]literacy stock. They face a cost of p per unit of financial literacy.
Individuals cannot reduce their financial literacy by selling or consuming their stock but can only choose to let it depreciate. I designate $\delta \in(0,1)$ the depreciation rate of the financial literacy stock. The depreciation of financial literacy can be understood as cognitive decline and sd the obsolescence of an existing financial knowledge (Lusardi, Michaud and Mitchell 2017).

Combining the investment, stock and depreciation variables, the financial literacy law of motion for my model can be written as the following:

$$
\begin{equation*}
\Phi_{t+1}=(1-\delta) \Phi_{t}+\ell_{t+1} \tag{7}
\end{equation*}
$$

Financial literacy investment cannot be negative, implying that individuals face the investment constraint:

$$
\begin{equation*}
\ell_{t+1} \geq 0 \tag{8}
\end{equation*}
$$

4.3 Borrowing

Agents can borrow and face a time-varying borrowing interest rate, $r_{b, t+1}$. The natural borrowing constraint is:

$$
\begin{equation*}
s_{t+1} \geq \sum_{k=t+1}^{J} \frac{-y_{\min }}{\left(1+r_{b}^{\max }\right)^{k}}=\overline{b_{t+1}} \tag{9}
\end{equation*}
$$

where $y_{\text {min }}$ is the minimum income possible and $r_{b, t+1}^{\max }$ is the maximum interest rate possible. Agents will never choose to borrow up to the bound $\overline{b_{t+1}}$, because that would give them a positive probability of consuming zero next period. ${ }^{12}$

The time-varying borrowing interest rate, $r_{b, t+1}$, follows an log-normal process $\operatorname{AR}(1)$:

$$
\begin{equation*}
\hat{r}_{b, t+1}=\rho_{r} \hat{r}_{b, t}+v_{t+1}, \tag{10}
\end{equation*}
$$

accumulate, then some individuals may rationally choose to remain financially ignorant.
${ }^{12}$ If agents borrow up to the bound, they will have no savings and may draw the lowest income shock next period. As a result, their entire income would be used in paying off the principal and interest on the loan. Without loss of generality, I will continue developing the model with the bound $\overline{b_{t+1}}$ in order to allow for tractable analysis of the mechanisms of the model.
where $\hat{r}_{b, t+1}=\exp \left(r_{b, t}\right), \rho_{r}$ is the persistence parameter of the interest rate shock and v_{t+1} is the innovation. When agents borrow, they do not know the exact rate they will pay next period but they do know the current period's repayment rate and the distribution of the shock process; they form expectations based on this knowledge.

Note that agents can borrow to finance their financial literacy. Previous models of financial literacy have lacked this feature but borrowing experience, especially for young adults, has been found to be associated with future financial literacy (Brown, Cookson and Heimer (2019).

4.4 Asset Path

An individual's wealth is dependent upon their income, their asset position, their financial literacy and their borrowing interest rate. Let X_{t} denote wealth in period t such that:

$$
\begin{equation*}
X_{t}=y_{t}+\left(1+r\left(\Phi_{t}\right)\right) s_{t} \mathbb{1}\left\{s_{t} \geq 0\right\}+\left(1+\hat{r}_{b, t}\right) s_{t} \mathbb{1}\left\{s_{t}<0\right\} . \tag{11}
\end{equation*}
$$

An agent's borrowing, consumption and financial literacy decisions are conditioned by the current period's state. Financial literacy investment and borrowing serve as two different avenues for consumption smoothing.

On the one hand, an agent can invest in financial literacy through borrowing and raise their return on savings. In this case, financial literacy will be positively correlated with borrowing. Brown, Cookson and Heimer (2019) find that individuals who had access to borrowing in their youth had higher levels of financial literacy than individuals who had grown up without such access.

On the other hand, as the return on savings is increasing through financial literacy investment, the opportunity cost to borrowing is also increasing. Agents will have a lower willingness to borrow and this may help explain why individuals with low financial literacy tend to borrow at higher rates (Lusardi and Scheresberg 2013). ${ }^{13}$

[^8]Given an agent's wealth, X_{t}, the savings asset in period $t+1$ is determined by the consumption and financial literacy choices in the current period and can be written as:

$$
\begin{equation*}
s_{t+1}=X_{t}-c_{t}-p \ell_{t+1} \tag{12}
\end{equation*}
$$

4.5 Consumer Problem

Combining the savings path (12), the financial literacy path (7), the income process (5) and the credit interest rate process (10), I define the state space in period t as $\Omega=$ $\left\{s_{t}, \Phi_{t}, y_{t}, r_{b t}\right\}$. In every period, individuals have a stock of savings $\left(s_{t}\right)$, financial literacy $\left(\Phi_{t}\right)$, income $\left(y_{t}\right)$ and a realized borrowing interest rate $\left(\hat{r}_{b, t}\right)$.

Using a CRRA utility function, I write the value function in period t as the following:

$$
V_{t}\left(s_{t}, \Phi_{t}, y_{t}, \hat{r}_{b, t}\right)=\max _{\ell_{t+1}, c_{t}, s_{t+1}} \frac{c_{t}^{1-\gamma}}{1-\gamma}+E_{t}\left[\beta V_{t+1}\left(s_{t+1}, \Phi_{t+1}, y_{t+1}, \hat{r}_{b, t+1}\right) \mid y_{t}, \hat{r}_{b t}\right]
$$

s.t

$$
\begin{gather*}
s_{t+1}=\left(1+r\left(\Phi_{t}\right)\right) s_{t} \mathbb{1}\left\{s_{t} \geq 0\right\}+\left(1+\hat{r}_{b, t}\right) s_{t} \mathbb{1}\left\{s_{t}<0\right\}+y_{t}-c_{t}-p \ell_{t+1} \tag{13}\\
\ell_{t+1} \geq 0 \tag{14}
\end{gather*}
$$

Each period, individuals make a savings choice, a financial literacy choice and a consumption choice. The reason the savings choice is made separately is because the decision to borrow leads to a different interest rate structure next period than if an individual saves. In either case, an individual can change their consumption level or financial literacy stock in either case.

Mitchell 2007), liquid assets and lower debt (Gorbachev and Luengo-Prado 2019).

5. Quantitative Analysis

5.1 Calibration

The initial level of financial literacy endowment and savings is likely the result of differences in high-school and college education requirements (Bernheim, Garrett and Maki 2003), as well as family background (Lusardi, Mitchell and Curto 2009). For the initial distribution, I use the empirical joint distribution of financial literacy, income and liquid net-worth from my sample for individuals ages 30-40.

For the discount factor, I follow Lusardi, Mitchell and Michaud (2017) and choose a value of 0.96 . For risk aversion, I set the risk aversion, γ, to 3 , following the estimates done by Hubbard, Skinner and Zeldes (1995).

The age-earnings profile, e_{t}, is constructed from the sample's age-cohort income means. The $\operatorname{AR}(1)$ parameters for the borrowing interest rate and income processes are calibrated so that the mean-to-standard deviation ratio of the stationary distribution of the $\operatorname{AR}(1)$ process matches mean-to-standard deviation ratio of the income and borrowing rate data. Following Lusardi, Michaud and Mitchell (2017), I set the cost of financial literacy, p, to 0.06 in order to approximate financial literacy cost to $\$ 500$ dollars a year. ${ }^{14}$

I calibrate the three remaining parameters - the elasticity of financial literacy investment α, the productivity of financial literacy stock A and the depreciation rate δ-by matching financial literacy changes across age-cohorts in the American Life Panel for the years 2009 to 2011. The identification of these parameters follows from the relationship of borrowing and financial literacy over the life cycle. Early in life, the financial literacy stock and savings assets tend to be low. The marginal return to financial literacy investment will be at its highest over the life cycle and this is determined by the parameter

[^9]α. Individuals are willing to borrow to invest if the marginal return is sufficiently high given their expectations about future borrowing conditions and their expectations about their future income. As individuals accumulate savings assets and financial literacy, their willingness to borrow will fall. Mid-life financial literacy levels and borrowing levels will help identify the productivity parameter A. Finally, individuals stop accumulating financial literacy at the end of their life. The rate of depreciation, δ, will be identified by late-life declines in financial literacy.

The model is solved using a grid search method with 160 asset grid points, where 80 of the grid points are negative, and the rest are non-negative. For financial literacy, I use 17 literacy grid points. For the shocks, I use 5 income shock grid points and 4 interest rate shock grid points.

Table 7: Parameter Calibration

Parameter	Value	Source/Function
β	0.96	Lusardi, Michaud and Mitchell (2017)
γ	3	Hubbard, Skinner and Zeldes (1995)
p	0.06	Lusardi, Michaud and Mitchell (2017)
ρ_{y}	0.911	Income Persistence
σ_{ε}^{2}	0.225	Income Shock Std.
ρ_{r}	0.703	Borrow Rate Persistence
σ_{v}^{2}	0.136	Borrow Rate Std.
α	.55	Investment Elasticity
δ	0.06	Depreciation Rate
A	0.021	Savings Productivity

Calibrated Parameters The parameter values are tabulated in table 7. The initial distribution's normalized average financial literacy is 0.7 and this implies that the average person receives a gross return (financial literacy + base rate) of about 1.038 over 10-years.

The calibrated rate of depreciation,δ, is 0.06 or about 0.6% per year. The calibrated elasticity of investment, α implies that a 10% increase in financial literacy leads to a fivepercent increase in return on savings.

Model Fit Table 8 reports the fit of the model for the targeted moments as well as the untargeted moments for model validation. The model fits the financial literacy profile well with an absolute error of 0.13 . The largest difference is found at around age 63, where the model's agents begin de-accumulating financial literacy before the sample deaccumulates. The absence of a pension plan in my model means that individuals do not expect to face a drop in income at retirement later in life. A model with a pension plan would likely lead to greater savings and financial literacy at this part of the life cycle.

The model also fits the borrowing proportions well for younger cohorts and follows the borrowing profile over the life cycle. The divergence between model and data likely reflects missing features of the model. For example, my model does not have out-ofpocket healthcare costs, which could raise the demand for borrowing later in life as older individuals are hit with health shocks. ${ }^{15}$ Similarly, my model doesn't have a retirement plan or mortality risk, both of which could have an influence on borrowing and financial literacy investment latter in life.

Nonetheless, the addition of these absent model features would likely not greatly affect the general trend of the outcomes in the early life cycle because they are mainly related to latter life choices.

[^10]Table 8: Targeted: Financial Literacy Mean Change

Age	$41-51$	$52-62$	$63-73$	$74-84$
Δ FinLit $^{\text {Data }}(\%)$	3.7	6.3	4.9	-3.2
Δ FinLit $^{\text {Model }}(\%)$	4.7	1.7	-1.0	-1.2
Untargeted: Negative Liquid Net Worth				
Borrowing $^{\text {Data }}(\%)$	18.4	15	10.7	7.2
Borrowing $^{\text {Model }}(\%)$	16.5	13	1	0

Δ FinLit is the percentage change in the cohort's average financial literacy from previous cohort mean. Liquid Net Worth is the liquid wealth minus credit card debt and taken from the Survey of Consumer Finance 2010.

6. Counterfactual Experiments

6.1 The Importance of Financial Literacy for Consumption Smoothing

In this section, I analyze the relative contribution of important features in my model. I do this by comparing the baseline model to a series of counterfactual models with a targeted feature absent.

The first distinction of my model from previous work on financial literacy is the inclusion of borrowing. In column 2 of Table 9.A, I report several outcomes of my model when households cannot borrow. The return on savings does not change significantly, although households have about $\$ 2000$ more in savings at age 41 than the baseline. Table 9.B shows the breakdown of the counterfactual for two age-cohorts and two income groups. Young individuals suffer the most when individuals cannot borrow. In particular, low-income, young individuals do not wish to save more and simply consume all the resources they have on hand. Their welfare loss is much greater than that of the average young indi-
vidual (-0.4% vs. -0.13%), who at least can draw on their savings. In contrast, older and wealthier individuals are relatively unaffected when borrowing is not available.

In the next column, I allow for borrowing but do not allow financial literacy investment. The distribution of welfare losses is now the reverse: households with accumulated savings suffer the greatest welfare loss because they lose their interest return. Column three of Table 9.A reports several outcomes for this case. The return on savings falls to the base rate of 2.0% and individuals have about \$200-400 less in savings over their life cycle. Table 9.C breaks down the counterfactual by group and compared to the first scenario, it is now older and wealthier individuals who have the greatest welfare loss. The first column of Table 9.C reports the loss in financial literacy investment-the amount the households would have done if they could invest-and the groups that suffer the greatest welfare loss are those groups that would have increased their initial financial literacy by about 1-5\% more at each age.

This experiment demonstrates that both financial literacy and borrowing have complementary effects on life cycle outcomes. When individuals are young, they borrow to both finance consumption and financial literacy. As an individual's stock of financial literacy grows, the opportunity cost of borrowing increases because financial literacy raises their return on savings. Households begin to transition from being net borrowers to net savers. In the next exercise, I will evaluate how borrowing uncertainty influences the transition from net borrower to net saver.

Table 9.A: Shut Down Model Features

	Baseline	No Borrow	No Invest
Avg. Return (\%) - Age 41-51	3.77	3.77	2.0
Avg. Return (\%) - Age 63-73	3.78	3.78	2.0
Savings (\$) - Age 41-51	67212	69104	67090
Savings (\$) - Age 63-73	90227	90243	89803
Financial Literacy - Age 41-51	8.73	8.73	8.34
Financial Literacy - Age 63-73	8.83	8.83	8.34
Δ Welfare From Baseline (\%)	0	-0.13	-0.95

Avg. Return is the total the total return on savings over the the total savings for individuals at the reported age. Financial Literacy is the average score out of 12. Welfare is calculated as the Compensating Equivalent Variation (CEV) for the initial age and weighted by the joint empirical distribution.

Table 9.B: Percent change in decisions by Group - No Borrowing

State	Δ FinLit Invest (\%)	Δ Savings (\%)	Δ Welfare (\%)
Young (Age 30)	-0.010	1.800	-0.130
Low-Income, Young	0	0	-0.400
Retirement	0.010	0	-0.010
Low-Income, Retirement	0.010	0	-0.003

Low-Income group represents individuals making under $\$ 40,000$ a year. Retirement group means the decisions made in the $t-1$ period going into retirement (Age 63).

Table 9.C: Percent change in decisions by Group - No FinLit Investment

State	Δ FinLit Invest (\%)	Δ Savings (\%)	Δ Welfare (\%)
Young (Age 30)	-4.60	-0.20	-0.95
Low-Income, Young	-2.00	0.00	-0.11
Retirement	-0.60	-0.19	-0.97
Low-Income, Retirement	-4.90	-0.15	-1.12

Low-Income group represents individuals making under $\$ 40,000$ a year. Retirement group means the decisions made in the $t-1$ period going into retirement (Age 63).

6.2 The Importance of Borrowing Rate Uncertainty

In this section, I explore a series of counterfactuals that evaluate the effect of a change in the persistence and variance of the borrowing interest rate shock. When individuals borrow, they do not know the value that they will have to pay back in the next period. However, individuals do know the borrowing rate process and form expectations that will influence their financial literacy investment decision.

The motivation behind this exercise is to evaluate how individuals may react in different kinds of credit markets. If interest rates are very persistent, such as in the credit card market (Ausubel 1991), then individuals may be more discouraged from insuring against borrowing rate variation than they would be in the adjustable-rate mortage market.

Table 10.A reports the results of the exercise, where the baseline model is reported on the top row for comparison purposes. The second row reports the outcomes for a counterfactual model where the shock persistence ρ_{r} is set to zero. This is effectively an independent and identically distributed (iid) shock process. On average, individuals have about 3-4\% more financial literacy at every age and see an increase in the average return of about 2 basis points. Table 10.B reports that every group is increasing financial literacy and savings compared to the baseline, especially young individuals with low-income. They increase their financial literacy by 8.2% and their savings by almost 100% from the baseline model. Borrowing is especially important for this group because they are cashconstrained. Based on my model's calibration, the increase in financial literacy for young, low-income individuals raises their return on savings by 10 basis points (0.1 percentage points) and because this will compound over their lifetimes, this has significant effects on savings. The wealth-to-income ratio is more than 100% greater than the baseline. The reason for this change can be inferred from the welfare loss (2.2%); individuals are saving more and investing in financial literacy for precautionary purposes.

What explains this change in financial literacy investment? When the borrowing interest rate is low, households expect borrowing to become more costly next period. Instead of borrowing, they save and/or invest more in financial literacy as an alternative means of consumption smoothing. When they are in a high borrowing interest rate state, they expect rates to fall next period but this may still be a reason to invest in financial literacy; the repayment will be cheaper and the borrowing rate is likely to rise again.

In the final row, I run a counterfactual where the variance of the interest rate shock is
$r_{b t}=\rho_{r} r_{b t-1}+v_{t}$
Table 10.A: Interest Rate -

Age	Avg. Return		Wealth-to-Income		Financial Literacy (out of 12)		Δ Welfare from Base \%
	41-51	63-73	41-51	63-73	41-51	63-73	
$\rho_{r}=0.7037$.	3.77	3.78	1.18	1.79	8.73	8.83	0
No Persistence							
$\rho_{r}=0$	3.77	3.80	2.50	3.30	9.00	9.20	-2.20
Increase in Variance							
$v_{t}=0.272$	3.77	3.78	1.18	1.20	8.73	8.83	-0.03
Notes: Baseline $\rho=0.7037$ and $\varepsilon_{v}^{2}=0.225$. Avg. Return is defined as the total return on savings divided by the total savings for individuals at that reported age. Wealth-to-Income is the average wealth to income at reported age, where wealth is defin as $\left(1+\mathrm{r}\left(\Phi_{t}\right)\right) s_{t}$ and income is y_{t}. Financial Literacy is the average score out of 12 for individuals at the reported age. Welfare calculated as the Compensating Equivalent Variation (CEV) from the initial age and weighted by the empirical joint distributio							

doubled. The realized outcomes (wealth-to-income, savings return) do not significantly change. The breakdown of the counterfactual in Table 10.C shows that the major change is that young individuals increase their savings by about one percent (approximately $\$ 2000$). The reason why the variance does not have as strong of an effect is because while it changes the spread of borrowing interest rates, the decision to borrow is still primarily an early-life decision. Hence, the welfare change for individuals at retirement is almost exactly zero. Furthermore, individuals who already felt constrained from high borrowing interest rates, will be relatively unaffected by a greater spread in the dispersion of borrowing rates.

Table 10.B: Percent change in decisions by Group - No Persistence

State	Δ FinLit Invest (\%)	Δ Savings (\$)	Δ Welfare (\%)
Young (Age 30)	3.00	30.00	-2.20
Low-Income, Young	8.20	93.20	30.00
Retirement	4.50	27.50	-1.50
Low-Income, Retirement	6.70	64.00	3.04

Low-Income group represents individuals making under \$40,000 a year. Retirement group means the decisions made in the $\mathrm{t}-1$ period going into retirement (Age 63).

Table 10.C: Percent change in decisions by Group - Doubled Variance ($\sigma_{v}^{2}=0.272$)

State	Δ FinLit Invest (\%)	Δ Savings (\$)	Δ Welfare (\%)
Young (Age 30)	-0.030	0.850	-0.030
Low-Income, Young	0.030	0	-0.135
Retirement	0.010	0.004	0.001
Low-Income, Retirement	0.020	0	-0.001

Low-Income group represents individuals making under $\$ 40,000$ a year. Retirement group means the decisions made in the $\mathrm{t}-1$ period going into retirement (Age 63).

This exercise shows that financial literacy is acquired when individuals expect borrowing to become more costly on average. From a practical standpoint, policymakers concerned with raising the financial literacy of their country are likely more interested in policies that can be concretely implemented and are welfare improving. The next section will test two policies aimed at either improving financial literacy or mitigating the effects of low financial literacy.

6.3 Effect of An Interest Rate Cap

For my first policy experiment, I evaluate the effect of an interest rate cap. In May 2019, legislation was proposed in congress to cap credit card interest rates at a 15% interest rate. ${ }^{16}$ The common justification for this policy is that regulation is needed to protect households that cognitive biases and/or financial ignorance from strategic pricing on the part of credit lenders (Campbell 2016). Empirical research has found that individuals with low financial literacy tend to borrow at higher interest rates (Huston 2012; Lusardi

[^11]$r_{b t}=\Psi r_{b t-1}+v_{t}$
Table 11.A: Interest Rate Cap

	Avg. Return (\%)		Savings (\$)		Debt-to-Income		Δ Welfare from Base \%
	41-51	63-73	41-51	63-73	41-51	63-73	
No Cap	3.77	3.78	67212	90227	0.07	0.03	0
Interest Cap $=r_{b t}^{\max }=15 \%$							
$\zeta\left(r_{b t}\right)=0$	3.77	3.78	67079	90227	0.07	0.04	0.01
$\zeta\left(r_{b t}\right)=10 \%$	3.77	3.78	68545	90235	0.05	0.08	-0.10

W/o Financial Literacy
\(\left.\begin{array}{cccccccc}\zeta\left(r_{b t}\right)=0 \& 2.00 \& 2.00 \& 66751 \& 89770 \& 0.07 \& 0.04 \& -0.90

\zeta\left(r_{b t}\right)=.10 \% \& 2.00 \& 2.00 \& 68217 \& 89804 \& 0.05 \& 0.08 \& -1.00\end{array}\right]\)| Notes: Baseline $r_{b t}^{\text {max }}=22 \%$. Avg. Return is defined as the total return on savings divided by the total savings for |
| :--- |
| individuals at that reported age. Savings is dollar value of savings at reported age. Debt-to-Income is the ratio of average |
| debt to income at reported age, where income is y_{t}. Welfare is calculated as the Compensating Equivalent Variation (CEV) |
| from the initial age and weighted by the empirical joint distribution. |

and de Bassa Scheresberg 2013), suggesting that an interest rate cap should be especially welfare-improving for this group.

The interest rate cap may encourage or may discourage financial literacy accumulation. Fist, individuals will face lower borrowing costs and can borrow more to invest in financial literacy. The gain in savings from the reduction of interest rates above the gap may also encourage greater financial literacy investment later in life. Second, because the cap reduces the mean and variance of borrowing interest rate process, individuals will have less incentive to save and/or invest in financial literacy. This is why a calibrated model is useful to judge the likely outcome of this policy's implementation.

The regulation will likely lead to rationing on the part of lenders because they will be unable to charge higher interest rates to cover the cost of credit risk. Therefore, I will consider two scenarios: one with credit rationing and one without rationing. I report the results of a scenario with no rationing in order to give an upper bound of the expected benefits of the interest rate cap.

Credit rationing will affect the consumption of agents. To model this, I re-arrange 12 so that current period consumption is on the left-hand side and augment this equation to include credit rationing. The new equation becomes:

$$
\begin{equation*}
c_{t}=X_{t}-p \ell_{t+1}-s_{t+1} \mathbb{1}\left\{s_{t+1} \geq 0\right\}-\left(1-\zeta\left(\hat{r}_{b, t}\right)\right) s_{t+1} \mathbb{1}\left\{s_{t+1}<0\right\} \tag{15}
\end{equation*}
$$

where $\zeta\left(\hat{r}_{b, t}\right)$ is the probability of being denied credit.
Table 11. A reports the results of the interest rate cap, both with and without rationing. ${ }^{17}$ The effect of the interest rate cap on financial literacy, for both rationing and non-rationing cases, is very slight: individuals slightly decrease their financial literacy when borrowers do not ration (Table 11.B) and slightly increase their financial literacy when borrowers ration (Table 11.C). This is consistent with the results of the variance exercise in Table 10.A because the cap is implicitly a decrease in the variance of the borrowing rate. Fur-

[^12]thermore, individuals save about $\$ 200$ less with the interest rate cap but when borrowers begin rationing credit, they save about $\$ 600$ more when they are young for precautionary purposes. Tables 11.B and 11.C report the breakdown of the results by several cohorts. Young individuals, especially if they are low-income young individuals, benefit the most from the interest rate cap. They have the greatest demand for borrowing because they have low savings and expect their income to rise over their lifetime. This is why when borrowers ration credit, the same group suffers the greatest welfare loss (Table 11.C). Older individuals are almost completely indifferent to the policy because on average, they have accumulated enough savings to draw on.

Table 11.B: Percent change in decisions by Group - Int. Cap (No Ration)

State	Δ FinLit Invest (\%)	Δ Savings (\%)	Δ Welfare (\%)
Young (Age 30)	-0.010	-0.040	0.040
Low-Income, Young	0	-0.010	0.140
Retirement	-0.010	-0.002	0
Low-Income, Retirement	-0.010	-0.01	0.002

Low-Income group represents individuals making under \$40,000 a year. Retirement group means the decisions made in the $t-1$ period going into retirement (Age 63).

Table 11.C: Percent change in decisions by Group - Int Cap (10\% Rationing)

State	Δ FinLit Invest (\%)	Δ Savings (\%)	Δ Welfare (\%)
Young (Age 30)	-0.030	1.900	-0.050
Low-Income, Young	0	0.080	-0.070
Retirement	0.010	0.001	-0.001
Low-Income, Retirement	0.010	0.004	0

Low-Income group represents individuals making under $\$ 40,000$ a year. Retirement group means the decisions made in the $t-1$ period going into retirement (Age 63).

In the last two rows of table 11.A, I repeat the experiment but without financial literacy investment. In this scenario, individuals have less savings at each reported age because they do not have the opportunity to increase their return on savings. This is particularly important for the rationing case, where individuals have about \$200-300 less than they would if they could invest in financial literacy.

Figure 11.D plots the distribution of welfare losses for four groups in a set of contour plots. The age-group shown is $30-40$ year-olds (initial age). The x-axis represents the savings state and the y-axis is the financial literacy stock. The only group that is indifferent to the policy is the high-income, high-borrowing rate group, because they are primarily net savers (bottom left). For members of the high-income, low-borrowing rate group (bottomright panel), financially literacy allows them to partially insure against the possibility of future credit constraints. Individuals with financial literacy over 75% financial literacy see an attenuation of welfare loss by about 0.02%.

On the contrary, for the low-income groups, welfare slightly decreases as their stock of financial literacy is increasing. For this group, the wealth effect is dominant and the more financially literate individuals would like to borrow against future wealth, but face
credit constraints.
The effect of the interest rate cap is ambiguous. Individuals with low financial literacy and low-income would benefit from lower borrowing prices but credit rationing would harm them the most. A potentially better policy would be to improve their financial literacy and encourage them to shift towards becoming net savers.

6.4 A Financial Literacy Subsidy

A recent survey found that at least 76% of young adults believe that their high school should have offered a financial education course. ${ }^{18}$ It is not clear that simply providing financial education is always effective. For example, financial education tends be less effective for low-income cohorts (Kaiser and Menkhoff 2017). This is consistent with the view that individuals may choose to be financially ignorant. Instead, financial education tends to be most effective when it is immediately relevant to an individual's financial situation (Fernandes, Lynch and Netemeyer 2014). ${ }^{19}$ Because individuals in low-income cohorts are more likely to be in a distressing financial situation, this counter-point would suggest that they will be more receptive to the financial literacy subsidy. For this policy experiment, I simulate two amounts of financial literacy investment subsidy (10% and $30 \%)$.

The first subsidy, which covers 10% of the cost, leads to a $.03 \%$ increase in welfare from the baseline. Individuals on average receive nearly 0.03 percentage points higher return on savings with 10% subsidy and increase their financial literacy by about 2%. Increasing the subsidy to cover 30% of the cost of financial literacy increases the return on savings by nearly 0.05-0.06 percentage points and increases their welfare gain over the 10% subsidy six-fold.

What is the benefit of financial literacy, given that the wealth-to-income ratios remain constant? A higher return allows agents to more efficiently smooth consumption; they can reach their target wealth but give up less in the present. Table 12.B shows that the welfare gain is greatest for all low-income cohorts. For these cohorts, the marginal utility of consumption is high and they do not have a large enough income to encourage saving.

[^13]$X_{t}-s_{t+1}-(p-\tau) \cdot \ell_{t+1}$
Table 12.A: Subsidy Progr

	Avg.	turn (\%)	Wealth	-Income	Financ	Literacy	Δ Welfare from Baseline \%
Age	41-51	63-73	41-51	63-73	41-51	63-73	
No Subsidy	3.77	3.78	1.18	2.05	8.73	8.83	0.00
Full Population							
$\tau=.1$	3.78	3.81	1.18	2.05	8.82	9.00	0.03
$\tau=.3$	3.82	3.84	1.18	2.05	9.03	9.33	0.20
Youth Subsidized Only							
$\tau=.1$	3.78	3.79	1.18	2.05	8.80	8.86	0.01
$\tau=.3$	3.81	3.80	1.18	2.05	9.00	9.00	0.04
Subsidy covers $p \cdot \tau$ of the cost of financial literacy. Avg. Return is defined as the total return on savings divided by the to savings for individuals at that reported age. Wealth-to-Income is the average wealth to income at reported age, where wea is defined as $\left(1+\mathrm{r}\left(\Phi_{t}\right)\right) s_{t}$ and income is y_{t}. Financial Literacy is the average score out of 12 for individuals at the reported age Welfare is calculated as the CEV from the initial age and weighted by the empirical joint distribution.							

Table 12.B: Percent change in decisions by Group - Financial Subsidy

State	Δ FinLit Invest (\%)	Δ Savings (\%)	Δ Welfare (\%)
Young (Age 30)	1.000	0.010	0.060
Low-Income, Young	1.000	0.000	0.120
Retirement	1.600	0.010	0.040
Low-Income, Retirement	1.100	0.001	0.100

Low-Income group represents individuals making under \$40,000 a year. Retirement group means the decisions made in the $t-1$ period going into retirement (Age 63).

Table 12.C: Percent change in decisions by Group - Financial Subsidy for Youth Only

State	Δ FinLit Invest (\%)	Δ Savings (\%)	Δ Welfare (\%)
Young (Age 30)	0.820	0.010	0.010
Low-Income, Young	0.330	0.000	0.010
Retirement	0.320	0.010	0.000
Low-Income, Retirement	0.340	0.001	0.000

Low-Income group represents individuals making under $\$ 40,000$ a year. Retirement group means the decisions made in the $t-1$ period going into retirement (Age 63).

The long-term effect of a one-time subsidy is shown in the last two rows of table 12.A. In this policy, the subsidy is only offered for the initial age. Individuals see their average return increase by about 1 basis point at all ages. However, the welfare gain is much less. Comparing the welfare gains in tables 12.B and 12.C for the young groups, the one-time subsidy improves welfare and increases financial literacy for these groups noticeably less. The low-income group, for instance, sees a welfare gain of one-twelfth of the gain in the full subsidy and increases their financial literacy by about 70% less than
the full subsidy. This is because the low-income, young group have lower savings on average and the immediate benefit of the subsidy is relatively less. When the subsidy is offered for all ages, individuals take into account the value of literacy for when they will have accumulated savings. This highlights one of the limitations of early-life financial educations. As individuals accumulate savings over their lifetimes, the value of financial literacy is increasing; a one-time subsidy may be more effective at a later period of life.

Figure 12.D shows the welfare distribution for the 10% subsidy. The greatest welfare gains are for low-income individuals, especially if they face high-borrowing rates and are leveraged. For this group, the financial literacy subsidy is more beneficial the greater the existing stock of financial literacy. These individuals have a high a marginal utility of consumption and the subsidy allows them to upkeep their stock of financial literacy, in order to benefit from it when they pay off their debt. In other words, the subsidy helps them to transition into becoming net savers. However, because income is persistent, they benefit relatively less if they are net savers (to the right of 0 on the x -axis) because they do not expect high-income out of which to save in future periods.

When individuals have high-income (lower two panels), the low financial literacy group benefits the most from the policy because they have a greater marginal return to financial literacy investment. In this case, it is the leveraged groups that benefit less from the subsidy because the high-income cohort expects to save relatively more than the low-income group during their life time.

7. Conclusion

In this paper, I develop a model of financial literacy investment and evaluate how borrowing interest rate uncertainty influences financial literacy investment decisions. I find that an agent's expectation about the cost of borrowing has the greatest effect on financial literacy accumulation. When agents expect credit to be expensive, they shift their resources towards investing in financial literacy as an alternative way to smooth consumption over their lives. The effect of experiencing a bad credit shock early in life may induce some individuals to invest more in financial literacy than they would if credit was looser. Inequality in financial literacy levels may be explained by differences in borrowing histories.

While this insight is important for understanding the potential consequences of a public policy, it does not offer a positive prescription. Therefore, I evaluate the effects of two popular policies that have been proposed to ameliorate the effects of low financial literacy. I find that an interest rate cap is only welfare-improving if borrowers do not ration credit. However, even if credit is not rationed, individuals are discouraged from accumulating financial literacy and this may lead them to be unprepared in the case of a future adverse shock. I show that a financial literacy subsidy is a preferable policy to improve welfare for low-income and leveraged households because it leads them to increase their return on savings so as to better insure against potential negative shocks.

The implication of these two policy experiments is that any monetary policy that reduces the cost of borrowing should be coupled with a targeted financial education policy. Future work could extend the insights from this paper to a general equilibrium framework to evaluate how discouraging financial literacy accumulation through looser credit policies may create unintended consequences. Policymakers interested in improving the financial literacy of their citizens will find these results most fruitful.

Appendix

1 Additional Regression-Related Tables and Graphs

Table 1: Factor Analysis

Variable	Uniqueness (1-Communality)
Compound	0.80
Inflation	0.76
Risk Diversification	0.64
Interest Rates \& Bonds	0.82
Money Illusion	0.91
Time Value of Money	0.80
Highest Return	0.62
Highest Fluctuation	0.72
Highest Spread	0.61
Early IRA Withdrawal	0.83
Traditional vs Roth	0.79
Minimum Withdrawal	0.74

Note: Factor Analysis uses Principal Components Analysis. Communality is the percentage of the variance explained by other variables.

	Table 2: Dependent Variable: Average State Mortgage Rate						
Variables	Contract	Contract	Contract	Effective	Effective	Effective	
$\overline{\text { LoanReserve }}_{\text {st }}$	$.06^{*}$	$.07^{* * *}$	$.07^{* * *}$	$.08^{* *}$	$.09^{* * *}$	$.09^{* * *}$	
	$(.038)$	$(.024)$	$(.023)$	$(.04)$	$(.03)$	$(.03)$	
R^{2}	0.0159	0.7597	0.9204	0.0265	0.7092	0.9110	
State Fixed Effects?	N	N	Y	N	N	Y	
Year Dummies?	N	Y	Y	N	Y	Y	
Observations	150	150	150	150	150	150	

[^14]Table 3: Summary Statistics

Variable	Mean	Median	Std Dev.
Δ FinancialLiteracy $_{\text {ijt }}$	0.17	0	1.10
$\Delta \log$ Income $_{i j t}$) (percentage)	0.01	0	0.28
Δ LoanReserve $_{j t}$ (pct. points)	0.01	-0.03	0.42
Age $_{i j t}$	57	56	12
N	1482		

All variables are for individual i in MSA j in year t. Δ FinancialLiteracy $y_{i j t}$ is the change in financial literacy score, out of 12 , from year $\mathrm{t}-1$ to year $\mathrm{t} . \Delta \log \left(\right.$ Income $\left._{i j t}\right)$ is the change in the logarithm of individual i 's income in MSA j in year $t . \Delta$ Loan Reserve $_{j t}$ is the change in loan-loss ratio in MSA j from year $t-1$ to year t .

\[

\]

Table 5: Financial Literacy Change

Variables	I	II	III	IV
Δ LoanReserve $_{j t}$	$\begin{gathered} 0.27^{* *} \\ (0.13) \end{gathered}$	$\begin{gathered} 0.27^{* *} \\ (0.13) \end{gathered}$	$\begin{gathered} 0.30^{* *} \\ (0.12) \end{gathered}$	$\begin{gathered} 0.33^{* *} \\ (0.13) \end{gathered}$
$\overline{A g e}_{i j t}^{2}$		$\begin{gathered} -.003^{*} \\ (.004) \end{gathered}$	$\begin{gathered} -.008^{*} \\ (.004) \end{gathered}$	$\begin{gathered} -.008^{*} \\ (.004) \end{gathered}$
Δ LoanReserve $_{j t} \times \overline{\text { Age }}_{i j t}$			$\begin{gathered} -.012 \\ (.012) \end{gathered}$	$\begin{gathered} -.012 \\ (.012) \end{gathered}$
Δ LoanReserve $_{j t} \times \overline{\text { Age }}_{i j t}^{2}$				$\begin{aligned} & -.0002 \\ & (.0002) \end{aligned}$
N	1482	1482	1482	1482
Adj R ${ }^{2}$	0.6826	0.6842	0.6849	0.6851
Standard errors in parentheses, clustered at the MSA level. Year and individual fixed-effects in all specifications. Dependent Variable, Δ FinancialLiteracy $_{i j t}$, is the change in financial literacy score from year t - 1 to t and is standardized. Δ Loan Reserve $_{j t}$ is the change in the average loanloss ratio for multi-state banks in MSA j. Controls include the logarithm of income, the number of members in respondent's family and a dummy for home ownership.				

Financial Literacy Life Cycle

Figure 1
Correct (\%) is the percentage of questions answered correctly. Each node is the average financial literacy answered correctly for individuals from the age to 5 -years older (e.g. 25-30).

Table 6: Dependent Variable: Residuals from Liquid Wealth Regression

Variables	Full Population	Old (>50)	Young (≤ 50)
FinLit $_{i j t}$	$2.14^{* * *}$	$1.16^{* * *}$ (0.28)	$0.79^{* *}$ (0.36)
R^{2}	0.050	0.028	0.023
Observations	1820	1317	503

Standard errors in parentheses, clustered at the MSA level. Dependent variable is the residual from a regression of the logarithm of liquid wealth on the respondent's age, their age-squared, the average loan-loss ratio for the region they live in, their income, a dummy if they own a home, the number of family members in their household, an individual fixed-effect and a year effect.

Data Construction

1 American Life Panel

The American Life Panel is a probability-based panel that is open for researchers to construct their own experiments. Since the ALP has a unique individual identifier and the time stamp for each individual's participation in a given survey, I can match different surveys that run parallel in order to get an observation of that individual for that year.

Construction of Financial Literacy Index

Four of my financial literacy questions are often called the "Big 5" sample (Hastings, Madrian and Skimmyhorn 2013) and I include one other quetsion - "money illusion." Certain questionnaires, such as survey 21, are in the field between two years. For sake of consistency, I only take those individuals who answer and complete the survey in a year in my sample.

Question 1 - Numeracy

"Suppose you had $\$ 100$ in a savings account and the interest rate was 2% per year. After 5 years, how much do you think you would have in the account if you left the money to grow: more than $\$ 102$, exactly $\$ 102$, less than $\$ 102$?"

Observations for this question are taken from Well-Being Survey 21 (Economics and Retirement Scenarios), 50 (Cognition and Aging in the USA Internet Decision Making Survey [W02]) and 64 (Financial Literacy March 09) for year 2009; Survey 118 (ms118_CI2) in year 2010 and survey 179 (int_rate_literacy), Survey 182 (ms118_CI2), Survey 186(q47), Survey 189 (bf1) and Survey 196 (q59) for year 2011.

Question 2 - Interest rates and Bond Prices

Observations for this question are taken from surveys 21, 50 and 64 for year 2009 and surveys 180 (in1) and 189 (in1) in year 2011. For the year of 2010, I take the median of the individual's score from 2009 and 2011. An example of this question is:
"If the interest rates fall/rise, what should happen to bond prices?

1. They should rise
2. They should fall
3. They should stay the same
4. Don't know

Question 3 - Inflation

"Imagine that the interest rate on your savings account was 1\% per year and inflation was 2% per year. After 1 year, how much would you be able to buy with the money in this account?"

Observations for this question are taken from Well-Being Survey 21 (Economics and Retirement Scenarios), 50 (Cognition and Aging in the USA Internet Decision Making Survey [W02]) and 64 ((Financial Literacy March 09) for the year 2009;

Question 4 -Risk Diversification

There are many variations on this question but the basic form is:
""Buying company stock usually provides a safer return than buying a stock mutual fund."

Observations for this question are drawn from survey 50 and 64 for the year 2009; using questions ms179_SAFER, ms179_ FLsafer1 and ms179_ FLsafer2 from Well-Being Survey 179 (Please tell us whether this statement is true or false. Buying a [single company stock/stock mutual fund] usually provides a safer return than a [stock mutual fund/single company stock]); using question ms186_ Q48 from Well-Being Survey 186 ("True or false? Buying company stock usually provides a safer return than buying a stock mutual fund.");

Question 5-Money Illusion

Question 5 was also included in Klapper, Lusardi and Panos (2013). For the year of 2009, observations for this question are taken from surveys 21,50 and 64 .

For the year of 2010, the ALP lacks a sufficient amount of observations for individuals answering question 3 (Interest Rates and Inflation). As a consequence, I fill in observations based on an individual's outcomes in the years 2009 and 2011. I take the median.

Question 10-IRA taxation

Question 10 asks
"Which of the following statements are true?
In any type of IRA or $401(\mathrm{k})$ account, all of the money in your account grows tax-free.

If you have a traditional IRA or 401(k), you make contributions out of pre-tax income and pay income tax at your future tax rate when you withdraw the funds.

Both are true

Don't know

Construction of Liquid Wealth

$\underline{2009}$

I use two surveys for liquid wealth in 2009 - Survey 48 (Cognition and Retirement Survey) and Survey 62 (HRS Module Q). Survey 48 is in field from 11/08 to 09/09. For liquid wealth, I use the questions q113 (checking accounts, savings accounts, money market accounts, certificates of deposit, short-term treasury Bills, and cash), q120 (U.S. index funds), q121 (sector funds), q122 (other U.S. stock funds, such as growth, income or value funds), q125 (stock of company that currently employs you), q126 (stock of a company that formerly employs you), q128 (foreign stock) and q129 (company bonds).

For the years of 2009 and 2011, I also rely on observations from the on-going Health and Retirement Study Module Q (Income and Asset Section). In the ALP, this is survey 62. I am able to make up for some missing observations in year 2009 using this survey and I do so by summing up the following responses:
q317_amtstock (stocks total value), q331_amtbonds (bond asset total value), q344_amtchksave (Checking, savings and money market total value) and q357_amtcd (CDs, Government Savings Bonds and Treasury Bills)

If instead of answering the total value version of the question, the individuals give a range (e.g. q317_range), I take the median of the bracket and use this as the value for the question.

Information on liquid wealth is sparse for the ALP in the year 2010. Only 345 individuals report any liquid wealth values in 2010 for the survey 62 (HRS Module Q Income and Assets Section). At the very beginning of 2011 (01/03-01/13), the "Effects of the Financial Crisis" added a section to their survey entitled "Assets." In order to match the other surveys, I sum up the answers to:

ST003 (worth of stock holdings), A008_amount (corporate, municipal, government or foreign bonds, or bond funds amount asset) , A009_amount (checking or savings accounts, or money market fund amount asset), and A010_amount (CDs, Government Savings Bonds, or Treasury Bills amount asset)

Finally, for any individuals in my sample that I still do not have observations for in 2010, I take the median value of their 2009 and 2011 liquid wealth values.

$\underline{2011}$

For 2011, I again use the survey 62 for households that are interview during 2011.
I also rely on survey 189 - "Savings Behavior." In order to match the other surveys used in my dataset, I sum up the values for the following questions:
al6a1 + al6a2 (checking, savings and money market accounts value), al72a (stocks and mutual funds value), al8a (bonds value) and al9a (CDs, Government Savings Bonds, or U.S. Treasury Bills value)

Finally, I use survey 236 - "Effects of the Financial Crisis," for any remaining individuals in my sample whom I do not have observations of their assets for in 2011. This survey was fielded from January 1 to January 11 of 2012. Like survey 162, I sum up the answers to the following questions:

ST003 (worth of stock holdings), A008_amount (corporate, municipal, government or foreign bonds, or bond funds amount asset), A009_amount (checking or savings accounts, or money market fund amount asset), and A010_amount (CDs, Government Savings Bonds, or Treasury Bills amount asset)

Once the data is gathered, I deflate the values (which are given in dollar terms) with a base year of 2009 .

Income

Income is constructed from two demographic variables available in every American Life Panel survey. For example, given survey 50, the two variables "ms50_familyincome" and "ms_familyincome_part2." The question is

Which category represents the total combined income of all members of your family (living here) during the past 12 months? This includes money from jobs, net income from business, farm or rent, pensions, dividends, interest, social security payments and any other money income received by members of your family who are 15 years of age or older.

If the respondent answers " 75,000 or more," then they asked a second question:
You told us that the total combined income of all members of your family (living here) during the preceding 12 months was more than $\$ 75,000$. Thinking about the total combined income of your family from all sources, approximately how much did members of your family receive during the previous 12 months?

Respondents who select into this second question are then asked to then choose between four more brackets. I combine these two questions to form a 17-bracket scale of income. In order to construct a continuous variable, I take the median value for each income bracket except the highest bracket - "200,000 or more" - which I replace with the number 200,000.

Construction of MSA identifier

The nearest Metropolitan Statistical Area (MSA) of individuals is first identified using surveys $227,238,250,254,261$ and 287 . All of the surveys are called "Asset Price Expectations" and question "_FL_city" asks individuals to fill in the city closest to their zipcode. ${ }^{20}$ Only survey 227 falls within the years of my sample, so I need to identify the migration patterns of

In particular, I use surveys 36 and 300 in order to encircle my sample years and identify the region someone was in during that period. In both surveys there are several questions asking respondents about how long they live in an area and when they moved to the area. For my sample, I choose individuals who report living at their main residence since before 2009

For example, take someone who reports living in the Houston-Baytown-Sugarland MSA in 2012. If in 2012 or later they report having lived at their main residence since 2008 or earlier, they are included in my sample since I know they were in this MSA in 2009-2011. However, if they reported the same thing but in 2010, I cannot include them, because I do not know if they moved in 2011. ${ }^{21}$

Since there are MSA's with the same name but in different states (e.g. Springfield), I use surveys 300 and 312 ("Global Warming and Other Survey for mixed mode [Sample2]") to gather information on the state that individuals reside in order to match the individuals with the correct MSA.

The American Life Panel also identifies multi-respondent households. If I am missing the location of an individual but I have the response of someone else in their household, I fill in their location based on the response from the household member. ${ }^{22}$

[^15]
2 Bank-Related Data from FDIC

Construction of Loan Reserve to Total Loans Variable

MSA-level bank data is taken from the Federal Deposit Insurance Corporation (FDIC). For each MSA, I construct a weighted-average of the loan-reserve-to-total-loan ratio for multi-state banks in that area. I use only data from banks that operate in multiple states as their decisions should be plausibly exogenous from any one region's local conditions. The MSA average is constructed by weighing each bank's loan-reserve-to-total-loan ratio by its deposit-share for its branches in that MSA for multi-state banks in order to appropriately quantify a bank's impact on local credit conditions.

The FDIC Call Report data is given quarterly but my household panel data is yearly. Therefore, I take the yearly average for each of the bank's reported data. In the FDIC Call Report data, I use lnlsgr as the total loans on a bank's balance sheet in year $t .{ }^{23}$ For the loan loss allowance, I use lnatres as the loan loss allowance.

$$
\begin{equation*}
\text { LoanReserveRatio }_{j t}=\frac{\text { Loan Loss Allowance }_{j t}}{\text { Total Loans }_{j t}} \times 100 \tag{16}
\end{equation*}
$$

3 Model Features and Calibration

Construction of Saving Return

I reported the Savings return as the weighted average return on savings received by individuals savings. In order to calculate the rate, I do the following for each period t :
household. After the colon, the last number identifies respondents within a household. Therefore, certain information, such geographical residence, can be assumed to hold for all members of the household, even if not directly asked. The reason I can do this is because an individual who moves out of a household but remains in the American Life Panel is assigned a new identifier (See "Frequently asked questions," American Life Panel).
${ }^{23}$ Total loans and lease financing receivables, net of unearned income.

1. Calculate the total interest accrued in period t
2. Calculate the total saving amount drawn in peirod t

Then the weighted rate is calculated as follows:

$$
\begin{equation*}
{\text { Saving } \text { Return }_{t}=\frac{\text { Interest Factor }}{t}}_{\text {Total Saving Amount }}^{t} \text { } \tag{17}
\end{equation*}
$$

This can then be multiplied by 100 to put this calculation in conventional percentage expression. The Weighted Savings Rate is calculated in the same way, with the appropriate changes.

Construction of Interest Rate Shock Process

To construct the interest rate shock process, I use the Survey of Consumer Finance 2010 since that overlaps with the American Life Panel data taken from 2009-2011. I use question X7132 " What interest rate do you pay on the card where you have the largest balance?"

I drop observations that report paying a non-positive interest rate. ${ }^{24}$ The average interest rate is 14.6 , with little variation across age cohorts.

[^16]
Bibliography

[1] Abreu, Margarida, and Victor Mendes. "Financial literacy and portfolio diversification." Quantitative finance 10, no. 5 (2010): 515-528.
[2] Agénor, Pierre-Richard, and Roy Zilberman. "Loan loss provisioning rules, procyclicality, and financial volatility." Journal of Banking Finance 61 (2015): 301-315.
[3]
[4] Alessie, Rob JM, Annamaria Lusardi, and Maarten Van Rooij. "Financial literacy, retirement planning and household wealth." The Economic Journal 122, no. 560 (2012): 449-478.
[5] Almenberg, Johan, and Jenny Säve-Söderbergh. "Financial literacy and retirement planning in Sweden." Journal of Pension Economics Finance 10, no. 4 (2011): 585598.
[6] Ahmed, Anwer S., Carolyn Takeda, and Shawn Thomas. "Bank loan loss provisions: a reexamination of capital management, earnings management and signaling effects." Journal of Accounting and Economics 28, no. 1 (1999): 1-25.
[7] Arrondel, Luc, Majdi Debbich, and Frédérique Savignac. "Financial literacy and financial planning in France." Numeracy 6, no. 2 (2013): 8.
[8] Ausubel, Lawrence M. "The failure of competition in the credit card market." American Economic Review (1991): 50-81.
[9] Babiarz, Patryk, Richard Widdows, and Tansel Yilmazer. "Borrowing to cope with adverse health events: liquidity constraints, insurance coverage, and unsecured debt." Health Economics 22, no. 10 (2013): 1177-1198.
[10] Balasubramanyan, Lakshmi, James B. Thomson, and Saeed Zaman. "Evidence of forward-looking loan loss provisioning with credit market information." Journal of Financial Services Research 52, no. 3 (2017): 191-223.
[11] Balla, Eliana, Morgan J. Rose, and Jessica Sackett Romero. "Loan loss reserve accounting and bank behavior." Richmond Fed Economic Brief Mar (2012).
[12] Bassett, William F., Mary Beth Chosak, John C. Driscoll, and Egon Zakrajšek. "Changes in bank lending standards and the macroeconomy." Journal of Monetary Economics 62 (2014): 23-40.
[13] Bernanke, Ben S. "Financial literacy." Testimony before the Committee on Banking, Housing, and Urban Affairs of the United States Senate, May 23 (2006).
[14] Bernheim, B. Douglas, and Daniel M. Garrett. 'The effects of financial education in the workplace: Evidence from a survey of households." Journal of Public Economics 87, no. 7-8 (2003): 1487-1519.
[15] Boisclair, David, Annamaria Lusardi, and Pierre-Carl Michaud. "Financial literacy and retirement planning in Canada." Journal of Pension Economics Finance 16, no. 3 (2017): 277-296.
[16] Boyer, M. Martin, Philippe d'Astous, and Pierre-Carl Michaud. "Tax-Sheltered

Retirement Accounts: Can Financial Education Improve Decisions?." No. w26128. National Bureau of Economic Research, 2019.
[17] Brown, James R., J. Anthony Cookson, and Rawley Z. Heimer. "Growing up without finance." Journal of Financial Economics (2019).
[18] Brown, Meta, John Grigsby, Wilbert van der Klaauw, Jaya Wen, and Basit Zafar. "Financial education and the debt behavior of the young." Review of Financial Studies 29, no. 9 (2016): 2490-2522.
[19] Bucher-Koenen, Tabea, and Annamaria Lusardi. "Financial literacy and retirement planning in Germany." Journal of Pension Economics Finance 10, no. 4 (2011): 565584.
[20] Bucher-Koenen, Tabea, Annamaria Lusardi, Rob Alessie, and Maarten Van Rooij. "How financially literate are women? An overview and new insights." Journal of Consumer Affairs 51, no. 2 (2017): 255-283.
[21] Burman, Leonard E., William G. Gale, and David Weiner. "The taxation of retirement saving: Choosing between front-loaded and back-loaded options." National Tax Journal (2001): 689-702.
[22] Campbell, John Y. "Restoring rational choice: The challenge of consumer financial regulation." American Economic Review 106, no. 5 (2016): 1-30.
[23] Carpena, F., S. Cole, J. Shapiro, and B. Zia. "Unpacking the causal chain of financial literacy (Policy Research Working Paper 5798)." (2011).
[24] Cole, Shawn A., and Gauri Kartini Shastry. Smart money: The effect of education, cognitive ability, and financial literacy on financial market participation. Boston, MA: Harvard Business School, 2009.
[25] Deaton, Angus. Saving and liquidity constraints. No. w3196. National Bureau of Economic Research, 1989.
[26] Docking, Diane Scott, Mark Hirschey, and Elaine Jones. "Information and contagion effects of bank loan-loss reserve announcements." Journal of Financial Economics 43, no. 2 (1997): 219-239.
[27] Eberhardt, Wiebke, Wändi Bruine de Bruin, and JoNell Strough. "Age differences in financial decision making: T he benefits of more experience and less negative emotions." Journal of Behavioral Decision Making 32, no. 1 (2019): 79-93.
[28] Fernandes, Daniel, John G. Lynch Jr, and Richard G. Netemeyer. "Financial literacy, financial education, and downstream financial behaviors." Management Science 60, no. 8 (2014): 1861-1883.
[29] Finke, Michael S., John S. Howe, and Sandra J. Huston. "Old age and the decline in financial literacy." Management Science 63, no. 1 (2016): 213-230.
[30] Fisch, Jill E., Annamaria Lusardi, and Andrea Hasler. "Defined Contribution Plans and the Challenge of Financial Illiteracy." Cornell Law Review (2019): 19-22.
[31] Fonseca, Raquel, Kathleen J. Mullen, Gema Zamarro, and Julie Zissimopoulos. "What explains the gender gap in financial literacy? The role of household decision making." Journal of Consumer Affairs 46, no. 1 (2012): 90-106.
[32] Foster, Kevin. "Survey of Consumer Payment Choice Data User's Guide." Federal Reserve Bank of Boston
[33] Fulford, Scott L. "How important is variability in consumer credit limits?." Journal of Monetary Economics 72 (2015): 42-63.
[34] Gathergood, John. "Self-control, financial literacy and consumer over-indebtedness." Journal of Economic Psychology 33, no. 3 (2012): 590-602.
[35] Gathergood, John, and Jörg Weber. "Self-control, financial literacy the co-holding puzzle." Journal of Economic Behavior Organization 107 (2014): 455-469.
[36] Gorbachev, Olga, and María José Luengo-Prado. "The Credit Card Debt Puzzle: The Role of Preferences, Credit Access Risk, and Financial Literacy." Review of Economics and Statistics 101, no. 2 (2019): 294-309.
[37] Greenawalt, Mary Brady, and Joseph F. Sinkey. "Bank loan-loss provisions and the income-smoothing hypothesis: an empirical analysis, 1976-1984." Journal of Financial Services Research 1, no. 4 (1988): 301-318.
[38] Greer, Douglas F. "Rate ceilings, market structure, and the supply of finance company personal loans." Journal of Finance 29, no. 5 (1974): 1363-1382.
[39] Grohmann, Antonia, Roy Kouwenberg, and Lukas Menkhoff. "Childhood roots of financial literacy." Journal of Economic Psychology 51 (2015): 114-133.
[40] Hastings, Justine S., Brigitte C. Madrian, and William L. Skimmyhorn. "Financial literacy, financial education, and economic outcomes." Annual Review of Economics 5, no. 1 (2013): 347-373.
[41] Hausknecht, John P., Jane A. Halpert, Nicole T. Di Paolo, and Meghan O. Moriarty Gerrard. "Retesting in selection: a meta-analysis of coaching and practice effects for tests of cognitive ability." Journal of Applied Psychology 92, no. 2 (2007): 373.
[42] Heinberg, Aileen, Angela Hung, Arie Kapteyn, Annamaria Lusardi, Anya Savikhin Samek, and Joanne Yoong. "Five steps to planning success: experimental evidence from US households." Oxford Review of Economic Policy 30, no. 4 (2014): 697-724.
[43] Hubbard, R. Glenn, Jonathan Skinner, and Stephen P. Zeldes. "Precautionary saving and social insurance." Journal of Political Economy 103, no. 2 (1995): 360-399.
[44] Huston, Sandra J. "Measuring financial literacy." Journal of Consumer Affairs 44, no. 2 (2010): 296-316.
[45] Jappelli, Tullio. "Economic literacy: An international comparison." The Economic Journal 120, no. 548 (2010): F429-F451.
[46] Jappelli, Tullio, and Mario Padula. "Investment in financial literacy and saving decisions." Journal of Banking E Finance 37, no. 8 (2013): 2779-2792.
[47] Jayaratne, K. S. U., A. C. Lyons, and L. Palmer. "Financial education evaluation manual." Greenwood Village, CO: National Endowment for Financial Education. Retrieved April 16 (2007): 2008.
[48] Kaiser, Tim, and Lukas Menkhoff. "Does financial education impact financial literacy and financial behavior, and if so, when?" The World Bank, 2017.
[49] Kim, Hyungsoo, Wonah Yoon, and Karen A. Zurlo. "Health shocks, out-of-pocket medical expenses and consumer debt among middle-aged and older Americans." Journal of Consumer Affairs 46, no. 3 (2012): 357-380.
[50] Klapper, Leora, Annamaria Lusardi, and Georgios A. Panos. "Financial literacy and its consequences: Evidence from Russia during the financial crisis." Journal of Banking \mathcal{E} Finance 37, no. 10 (2013): 3904-3923.
[51] Klapper, Leora, Annamaria Lusardi, and Peter Van Oudheusden. "Financial literacy around the world." World Bank. Washington DC: World Bank (2015).
[52] Ludvigson, Sydney. "Consumption and credit: a model of time-varying liquidity constraints." Review of Economics and Statistics 81, no. 3 (1999): 434-447.
[53] Lusardi, Annamaria. "Why ‘Just in Time’ Financial Education Is Too Late." Wall Street Journal, September 21, 2015.
[54] Lusardi, Annamaria. "Financial literacy and the need for financial education: evidence and implications." Swiss Journal of Economics and Statistics 155, no. 1 (2019): 1.
[55] Lusardi, Annamaria, and Carlo de Bassa Scheresberg. Financial literacy and highcost borrowing in the United States. No. w18969. National Bureau of Economic Research, 2013.
[56] Lusardi, Annamaria, Pierre-Carl Michaud, and Olivia S. Mitchell. "Optimal financial knowledge and wealth inequality." Journal of Political Economy 125, no. 2 (2017): 431477.
[57] Lusardi, Annamaria, and Olivia S. Mitchell. "Baby boomer retirement security: The roles of planning, financial literacy, and housing wealth." Journal of Monetary Economics 54, no. 1 (2007a): 205-224.
[58] Lusardi, Annamaria, and Olivia S. Mitchell. "Financial literacy and retirement planning: New evidence from the Rand American Life Panel." Michigan Retirement Research Center Research Paper No. WP 157 (2007b).
[59] Lusardi, Annamaria, and Olivia S. Mitchell. How ordinary consumers make complex economic decisions: Financial literacy and retirement readiness. No. w15350. National Bureau of Economic Research, 2009.
[60] Lusardi, Annamaria, Olivia S. Mitchell, and Vilsa Curto. "Financial literacy among the young." Journal of Consumer Affairs 44, no. 2 (2010): 358-380.
[61] Lusardi, Annamaria, and Olivia S. Mitchell. "The economic importance of financial literacy: Theory and evidence." Journal of Economic Literature 52, no. 1 (2014): 5-44.
[62] Lusardi, Annamaria, and Peter Tufano. "Debt literacy, financial experiences, and overindebtedness." Journal of Pension Economics E Finance 14, no. 4 (2015): 332-368.
[63] McIntosh, Craig T., and Wolfram Schlenker. "Identifying non-linearities in fixed effects models." UC-San Diego Working Paper 2006.
[64] Monticone, Chiara. "How much does wealth matter in the acquisition of financial literacy?." Journal of Consumer Affairs 44, no. 2 (2010): 403-422.
[65] Mottola, Gary R., and Christine N. Kieffer. "Understanding and using data from the National Financial Capability Study." Family and Consumer Sciences Research Journal 46, no. 1 (2017): 31-39.
[66] Murphy, John L. "Psychosocial factors and financial literacy." Soc. Sec. Bull. 73 (2013): 73.
[67] Nolan, Anne, and Karina Doorley. Financial Literacy and Preparation for Retirement. No. 12187. Institute for the Study of Labor (IZA), 2019.
[68] Wagner, Jamie, and William B. Walstad. "The Effects of Financial Education on ShortTerm and Long-Term Financial Behaviors." Journal of Consumer Affairs 53, no. 1 (2019): 234-259.
[69] Wiener, Richard L., Corinne Baron-Donovan, Karen Gross, and Susan Block-Lieb. "Debtor education, financial literacy, and pending bankruptcy legislation." Behavioral sciences \mathcal{E} the Law 23, no. 3 (2005): 347-366.

[^0]: ${ }^{1}$ Affiliation: University of Houston. Email: djacobs@central.uh.edu. I thank my advisors Bent Sorensen, German Cubas, and Fan Wang for their guidance. I would also like to thank Aimee Chin, Radek Paluszynski and Vegard Nygaard for their helpful comments. Finally, I would like to thank the participants at the UH Spring 2019 Graduate Student Workshop and UT 2019 Macro Job Market Conference for their helpful comments and feedback regarding this paper.

[^1]: ${ }^{1}$ The survey tested the respondent's knowledge of compound interest rates and risk diversification.

[^2]: ${ }^{2}$ Their model also includes a pension plan and a risky-asset choice.

[^3]: ${ }^{3}$ See Jayaratne, Lyons and Palmer (2008) and Huston (2010)

[^4]: ${ }^{4}$ Angbazo (1997) measure of default risk is the proportion of non-performing loans on a bank's balance sheet. For super-regional banks, they find no evidence that this measure is associated with their net interest margin, a measure of the spread between the rate at which banks lend out and the rate they pay to depositors. However, they find that local banks increase their net interest margin in response to an increase in non-performing loans. While this measure is limited, it at least suggests that super-regional banks are less sensitive to any local increase in credit default risk.

[^5]: ${ }^{5}$ I average over 5-year bands because the sample has uneven representation by age.
 ${ }^{6}$ The peak in figure 1 is later than in previous research (e.g. Agarwal et al. 2009) but my measure of financial includes additional questions that test retirement knowledge.

[^6]: ${ }^{7}$ Due to the year fixed-effect, the linear age term is not identifiable.
 ${ }^{8}$ The quadratic term is constructed by first squaring the linear term and then demeaning the squared term. See McIntosh and Schlenker (2006).

[^7]: ${ }^{9}$ See Lusardi and Mitchell (2007), Lusardi and Tufano (2009), Jappelli and Padula (2013), Beckmann (2013), Anderson, Baker and Robinson (2017), Lusardi, Michaud and Mitchell (2017), and Boisclair, Lusardi and Michaud (2017)
 ${ }^{10}$ If the structure of financial literacy production was constructed as a linear function, then we should expect to see similar changes in financial literacy between age-cohorts.
 ${ }^{11}$ Lusardi, Michaud and Mitchell (2017) and Jappelli and Padula (2013) both show that some level of financial ignorance may be optimal. If financial literacy is treated as a stock that requires as cost to

[^8]: ${ }^{13}$ Furthermore, financially literate individuals tend to have higher retirement wealth (Lusardi and

[^9]: ${ }^{14}$ My model is normalized to $\$ 83020.83$, implying that 0.06 of $\$ 83000$ is about $\$ 4981$ every 10-years or about 500 dollars per year.

[^10]: ${ }^{15}$ See Kim et al. (2012) and Babiarz et al. (2013).

[^11]: ${ }^{16}$ Litvan, Laura. "Sanders, Ocasio-Cortez Propose 15\% Cap on Credit Card Interest." Bloomberg, May 9, 2019.

[^12]: 17 "No Cap" is the baseline model and included for comparison purposes.

[^13]: ${ }^{18}$ See Stolba, Stefan. "Survey: Generation Z Keen on Learning About Personal Finance and Credit." Experian. September 6, 2019.
 ${ }^{19}$ For example, individuals who are presently in bankruptcy are more likely retain information regarding bankruptcy

[^14]: Standard errors in parentheses, clustered at the MSA level. Contract and effective mortgage rates are retrieved from the Federal Housing Finance Agency, under "Historical Summary Tables."

[^15]: ${ }^{20}$ The variable label says "fill for city nearest to R zip code," where R means respondent.
 ${ }^{21}$ This applies only to survey 36, which was in field form 2008 to 2013.
 ${ }^{22}$ In the American Life Panel, the first seven numbers of the key identifier "prim_key" identify the

[^16]: ${ }^{24}$ Individuals are asked to write " -1 " if they are not paying interest on a credit balance. I drop observations that report 0%, since this means they are either not borrowing or face a 0% on their card for a limited time (e.g. interest payments are delayed for the first 12 months).

